
Kdump, A Kexec-based Kernel Crash Dumping
Mechanism

Vivek Goyal
IBM

vgoyal@in.ibm.com

Eric W. Biederman
Linux NetworkX

ebiederman@lnxi.com

Hariprasad Nellitheertha
IBM

hari@in.ibm.com

Abstract

Kdump is a kexec based kernel crash dump-
ing mechanism, which is being perceived as
a reliable crash dumping solution for LinuxR©.
This paper begins with brief description of what
kexec is and what it can do in general case, and
then details how kexec has been modified to
boot a new kernel even in a system crash event.

Kexec enables booting into a new kernel while
preserving the memory contents in a crash sce-
nario, and kdump uses this feature to capture
the kernel crash dump. Physical memory lay-
out and processor state are encoded in ELF core
format, and these headers are stored in a re-
served section of memory. Upon a crash, new
kernel boots up from reserved memory and pro-
vides a platform to retrieve stored ELF headers
and capture the crash dump. Also detailed are
ELF core header creation, dump capture mech-
anism, and how to configure and use the kdump
feature.

1 Introduction

Various crash dumping solutions have been
evolving over a period of time for Linux and
other UNIXR© like operating systems. All so-
lutions have their pros and cons, but the most

important consideration for the success of a so-
lution has been the reliability and ease of use.
Kdump is a crash dumping solution that pro-
vides a very reliable dump generation and cap-
turing mechanism [01]. It is simple, easy to
configure and provides a great deal of flexibility
in terms of dump device selection, dump saving
mechanism, and plugging-in filtering mecha-
nism.

The idea of kdump has been around for
quite some time now, and initial patches for
kdump implementation were posted to the
Linux kernel mailing list last year [03]. Since
then, kdump has undergone significant design
changes to ensure improved reliability, en-
hanced ease of use and cleaner interfaces. This
paper starts with an overview of the kdump de-
sign and development history. Then the limi-
tations of existing designs are highlighted and
this paper goes on to detail the new design and
enhancements.

Section 2 provides background of kexec and
kdump development. Details regarding how
kexec has been enhanced to boot-into a new
kernel in panic events are covered in section 3.
Section 4 details the new kdump design. De-
tails about how to configure and use this mech-
anism are captured in Section 5. Briefly dis-
cussed are advantages and limitations of this
approach in section 6. A concise description
of current status of project and TODOs are in-

1

cluded in Section 7.

2 Background

This section provides an overview of the kexec
and original kdump design philosophy and im-
plementation approach. It also brings forward
the design deficiencies of kdump approach so
far, and highlights the requirements that justi-
fied kexec and kdump design enhancements.

2.1 Kexec

Kexec is a kernel-to-kernel boot-loader [07],
which provides the functionality to boot into
a new kernel, over a reboot, without going
through the BIOS. Essentially, kexec pre-loads
the new kernel and stores the kernel image in
RAM. Memory required to store the new kernel
image need not be contiguous and kexec keeps
a track of pages where new kernel image has
been stored. When a reboot is initiated, kexec
copies the new kernel image to destination lo-
cation from where the new kernel is supposed
to run, and after executing some setup code,
kexec transfers the control to the new kernel.

Kexec functionality is constituted of mainly
two components; kernel space [08] and user
space [02]. Kernel space component imple-
ments a new system callkexec_load()
which facilitates pre-loading of new kernel.
User space component, here onwards called
kexec tools, parses the new kernel image, pre-
pares the appropriate parameter segment, and
setup code segment and passes the this data to
the running kernel through newly implemented
system call for further processing.

2.2 A Brief History of Kdump Develop-
ment

The core design principle behind this approach
is that dump is captured with the help of a cus-
tom built kernel that runs with a small amount
of memory. This custom built kernel is called
capture kernel and is booted into upon a sys-
tem crash event without clearing crashed ker-
nel’s memory. Here onwards, for discussion
purposes, crashing kernel is referred to as first
kernel and the kernel which captures the dump
after a system crash is called capture kernel.

While capture kernel boots, first kernel’s mem-
ory is not overwritten except for the small
amount of memory used by new kernel for its
execution. Kdump used this feature of kexec
and added hooks in kexec code to boot into a
capture kernel in a panic event without stomp-
ing crashed kernel’s memory.

Capture kernel used the first 16 MB of memory
for booting and this region of memory needed
to be preserved before booting into capture ker-
nel. Kdump added the functionality to copy the
contents of the first 16 MB to a reserved mem-
ory area called backup region. Memory for the
backup region was reserved during the first ker-
nel’s boot time, and location and size of the
backup region was specified using kernel con-
fig options. Kdump also copied over the CPU
register states to an area immediately after the
backup region during a crash event [03].

After the crash event, the system is unstable
and usual device shutdown methods can not be
relied upon, hence, devices are not shutdown
after a crash. This essentially means that any
ongoing DMAs at the time of crash are not
stopped. In the above approach, the capture
kernel was booting from the same memory lo-
cation as the first kernel (1 MB) and used first
16 MB to boot, hence, it was prone to cor-
ruption due to any on-going DMA in that re-

2

gion. An idea was proposed and a prototype
patch was provided for booting the capture ker-
nel from a reserved region of memory instead
of a default location. This reduced the chances
of corruption of the capture kernel due to on-
going DMA [04] [05]. Kdump’s design was up-
dated to accommodate this change and now the
capture kernel booted from reserved location.
This reserved region was still being determined
by kernel config options [06].

Despite the fact that the capture kernel was
booting from a reserved region of memory, it
needed first 640 KB of memory to boot for
SMP configurations. This memory was re-
quired to retrieve configuration data like the
MP configuration table saved by BIOS while
booting the first kernel. It was also required to
place the trampoline code needed to kick-start
application processors in the system. Kdump
reserved 640 KB of memory (backup region)
immediately after the reserved region, and pre-
served the first 640 KB of memory contents by
copying it to a backup region just before trans-
ferring control to capture kernel. CPU register
states were being stored immediately after the
backup region [06].

After booting, capture kernel retrieved the
saved register states and backup region con-
tents, and made available the old kernel’s dump
image through two kernel interfaces. The
first one was through the/proc/vmcore in-
terface, which exported the dump image in
ELF core format, and other one being the
/dev/oldmem , which provided a linear raw
view of memory.

2.3 Need for Design Enhancement

Following are some of the key limitations of
the above approach that triggered the design en-
hancement of kdump.

1. In the design above, kexec pre-loads the
capture kernel wherever it can manage to
grab a page frame. At the time of crash,
the capture kernel image is copied to the
destination location and control is trans-
ferred to the new kernel. Given the fact
that the capture kernel runs from a re-
served area of memory, it can be loaded
there directly and extra copying of kernel
can be avoided. In general terms, kexec
can be enhanced to provide a fast reboot
path to handle booting into a new kernel
in crash events also.

2. Capture kernel and the associated data is
pre-loaded and stored in the kernel mem-
ory, but there is no way to detect any data
corruption due to faulty kernel program-
ming.

3. During the first kernel boot, kdump re-
serves a chunk of memory for booting the
capture kernel. The location of this region
is determined during kernel compilation
time with the help of config options. De-
termining the location of reserved region
through config options is a little cumber-
some. It brings in hard-coding in many
places, at the same time it is static in na-
ture and a user has to compile the kernel
again if he decides to change the location
of reserved region.

4. Capture kernel has to boot into a lim-
ited amount of memory, and to achieve
this, the capture kernel is booted with
user defined memory map with the help of
memmap=exactmap command line op-
tions. User has to provide this user de-
fined memory map while pre-loading the
capture kernel and need to be explicitly
aware of memory region reserved for cap-
ture kernel. This process can be automated
by kexec tools and these details can be
made opaque to the user.

3

5. When the capture kernel boots up, it needs
to determine the location of the backup re-
gion to access the crashed kernel’s backed-
up memory contents. Capture kernel re-
ceives this information through hard coded
config options. It also retrieves the saved
register states assuming these to be stored
immediately after the backup region and
this introduces another level of hard-
coding.

In this approach, the capture kernel is
explicitly aware of the presence of the
backup region, which can be done away
with. In general, there is no stan-
dard format for the exchange of infor-
mation between two kernels which essen-
tially makes two kernel dependent on each
other, and it might now allow kernel skew
between the first kernel and the capture
kernel as kernel development progresses.

6. The /proc/vmcore implementation
does not support discontiguous memory
systems and assumes memory is contigu-
ous, hence exports only one ELF program
header for the whole of the memory.

3 Kexec On Panic

Initially, kexec was designed to allow booting
a new kernel from a sane kernel over a reboot.
Emergence of kdump called for kexec to allow
booting a new kernel even in a crash scenario.
Kexec has now been modified to handle system
crash events, and it provides a separate reboot
path to a new kernel in panic situations.

Kexec as a boot-loader supports loading of var-
ious kinds of images for a particular platform.
For i386, vmlinux, bzImage, and multiboot im-
ages can be loaded. Capture kernel is compiled
to load and run from a reserved memory loca-
tion which does not overlap with the first ker-

nel’s memory location (1 MB). However, cur-
rently only a vmlinux image can be used as a
capture kernel. A bzImage can not be used as
capture kernel because even if it is compiled
to run from a reserved location, it always first
loads at 1 MB and later it relocates itself to
the memory location it was compiled to run
from. This essentially means that loading bz-
Image shall overwrite the first kernel’s memory
contents at 1 MB location and that is not the
desired behavior.

From here on out the discussion is limited to
the loading of a vmlinux image for i386 plat-
form. Details regarding loading of other kind
of images is outside the scope of this paper.

3.1 Capture Kernel Space Reservation

On i386, the default location a kernel runs from
is 1 MB. The capture kernel is compiled and
linked to run from a non default location like 16
MB. The first kernel needs to reserve a chunk
of memory where the capture kernel and as-
sociated data can be pre-loaded. Capture ker-
nel will directly run from this reserved mem-
ory location. This space reservation is done
with the help of crashkernel=X@Y boot
time parameter to first kernel, whereX is the
the amount of memory to be reserved andY
indicates the location where reserved memory
section starts.

3.2 Pre-loading the Capture Kernel

Capture kernel and associated data are pre-
loaded in the reserved region of memory.
Kexec tools parses the capture kernel image
and loads it in reserved region of memory us-
ing kexec_load() system call. Kexec tools
manage a contiguous chunk of data belonging
to the same group in the form of segment. For
example, bzImage code is considered as one

4

segment, parameter block is treated as another
segment and so on. Kexec tools parses the cap-
ture kernel image and prepares a list of seg-
ments and passes the list to kernel. This list
basically conveys the information like location
of various data blocks in user space and where
these blocks have to be loaded in reserved re-
gion of memory.kexec_load() system call
does the verification on destination location of
a segments and copies the segment data from
user space to kernel space. Capture kernel is
directly loaded into the memory where it is sup-
posed to run from and no extra copying of cap-
ture kernel is required.

purgatory is an ELF relocatable object that
runs between the kernels. Apart from setup
code, purgatory also implements a sha256 hash
to verify that loaded kernel is not corrupt. In
addition,purgatory also saves the contents
to backup region after the crash (section 4.3).

Figure 1 depicts one of the possible arrange-
ments of various segments after being loaded
into a reserved region of memory. In this ex-
ample, memory from 16 MB to 48 MB has been
reserved for loading capture kernel.

 Backup Region

 Capture Kernel Image

 Parameter Segment

 Purgatory

Reserved
Region

16M

 48M

 4G

 0K

Figure 1: Various Data Segments in Reserved
Region

3.3 Post Crash Processing

Upon a crash, kexec performs a minimum ma-
chine shutdown procedure and then jumps to
the purgatory code. During machine shut-
down, crashing CPU sends the NMI IPIs to
other processors to halt them. Upon receiving
NMI, the processor saves the register state, dis-
ables the local APIC and goes into halt state.
After stopping the other CPUs, crashing CPU
disables its local APIC, disables IOAPIC, and
saves its register states.

CPU register states are saved in ELF note sec-
tion format [09]. Currently the processor sta-
tus is stored in note type NT_PRSTATUS at
the time of crash. Framework provides enough
flexibility to store more information down the
line, if needed. One kilobyte of memory is re-
served for every CPU for storing information in
the form of notes. A final null note is appended
at the end to mark the end of notes. Memory
for the note section is allocated statically in the
kernel and the memory address is exported to
user space throughsysfs . This address is in
turn used by kexec tools while generating the
ELF headers (Section 4.2).

cpu[0] cpu[1] cpu[NR_CPUS]

1K 1K 1K

NT_PRSTATUS Null
Note

Empty Space
filled with zero

Figure 2: Saving CPU Register States

After saving register states, control is trans-
ferred to purgatory . purgatory runs
sha256 hash to verify the integrity of the cap-
ture kernel and associated data. If no corruption
is detected, purgatory goes on to copy the first

5

640 KB of memory to the backup region (Sec-
tion 4.3). Once the backup is completed control
flow jumps to start of the new kernel image and
the new kernel starts execution.

4 Kdump

Previous kdump design had certain drawbacks
which have been overcome in the new design.
Following section captures the details of the
new kdump design.

4.1 Design Overview

Most of the older crash dumping solutions have
had the drawback of capturing/writing out the
dump in the context of crashing kernel, which
is inherently unreliable. This led to the idea of
first booting into a sane kernel after the crash
and then capturing the dump. Kexec enables
kdump to boot into the already loaded capture
kernel without clearing the memory contents
and this sets the stage for a reliable dump cap-
ture.

The dump image can be represented in many
ways. It can be a raw snapshot of memory read
from a device interface similar to/dev/mem ,
or it can be exported in ELF core format. Ex-
porting a dump image in ELF core format
carries the advantage of being a standard ap-
proach for representing core dumps and pro-
vides the compatibility with existing analysis
tools like gdb, crash , and so on . Kdump
provides ELF core view of a dump through
/proc/vmcore interface and at the same
time it also provides/dev/oldmem interface
presenting linear raw view of memory.

ELF core headers encapsulate the information
like processor registers, valid RAM locations,

and backup region, if any. ELF headers are pre-
pared by kexec tools and stored in a reserved
memory location along with other segments as
shown in the Figure 3.

 Backup Region

 Capture Kernel Image

 Parameter Segment

 Purgatory

Reserved
Region

16M

 4G

 0K

 ELF Core Headers

 48M

Figure 3: ELF Core Headers in Reserved Re-
gion

Memory for ELF core headers is reserved by
bootmem allocator during first kernel boot us-
ing thereserve_bootmem() function call.
Upon crash, system boots into new kernel and
stored ELF headers are retrieved and exported
through/proc/vmcore interface.

This provides a platform for capturing the
dump image and storing it for later analysis.
Implementation details are discussed in follow-
ing sections of this paper.

4.2 ELF Core Header Generation

Kdump uses the ELF core format to exchange
the information about dump image, between
two kernels. ELF core format provides a
generic and flexible framework for exchange
of dump information. The address of the start
of these headers is passed to the new kernel
through a command line option. This provides

6

a cleaner interface between the two kernels, and
at the same time ensures that the two kernels
are independent of each other. It also allows
kernel skew between the crashing kernel and
the capture kernel, which essentially means that
version of the crashing kernel and the capture
kernel do not need to be the same. Also, an
older capture kernel should be able to capture
the dump for a relatively newer first kernel.

Kexec tools are responsible for ELF core
header generation. ELF64 headers are suffi-
cient to encode all the required information, but
gdb can not open a ELF64 core file for 32 bit
systems. Hence, kexec also provides a com-
mand line option to force preparation of ELF32
headers. This is useful for the users with non
PAE systems.

One PT_LOAD type program header is created
for every contiguous memory chunk present in
the system. Information regarding valid RAM
locations is obtained from/proc/iomem .
Considering system RAM as a file, physical ad-
dress represents the offset in the file. Hence the
p_offset field of program header is set to
actual physical address of the memory chunk.
p_paddr is the same asp_offset except in
case of a backup region (Section 4.3). Virtual
address (p_vaddr) is set to zero except for the
linearly mapped region as virtual addresses for
this region can be determined easily at the time
of header creation. This allows a restricted de-
bugging withgdb directly, without assistance
from any other utility used to fill in virtual ad-
dresses during post crash processing.

One PT_NOTE type program header is cre-
ated per CPU for representing note informa-
tion associated with that CPU. Actual notes in-
formation is saved at the time of crash (Sec-
tion 3.3), but PT_NOTE type program header
is created in advance at the time of loading
the capture kernel. The only information re-
quired at this point is the address of location

where actual notes section reside. This ad-
dress is exported to user space throughsysfs
by kexec. Kexec user space tools read in the
/sys/kernel/crash_notes file and pre-
pare the PT_NOTE headers accordingly.

In the event of memory hotplug, the cap-
ture kernel needs to be reloaded so that the
ELF headers are generated again reflecting the
changes.

4.3 Backup Region

Capture kernel boots from the reserved area of
memory after a crash event. Depending on the
architecture, it may still need to use some fixed
memory locations that were used by the first
kernel. For example, on i386, it needs to use the
first 640 KB of memory for trampoline code for
booting SMP kernel. Some architectures like
ppc64 need fixed memory locations for stor-
ing exception vectors and other data structures.
Contents of these memory locations are copied
to a reserved memory area (backup region) just
after crash to avoid any stomping by the capture
kernel.purgatory takes care of copying the
contents to backup region (Section 3.2).

Capture kernel/capture tool need to be aware
of the presence of a backup region because ef-
fectively some portion of the physical mem-
ory has been relocated. ELF format comes in
handy here as it allows to envelop this informa-
tion without creating any dependencies. A sep-
arate PT_LOAD type program header is gener-
ated for the backup region. Thep_paddr field
is filled with the original physical address and
the p_offset field is populated with the re-
located physical address as shown in the Figure
4.

Currently, kexec user space tools provide the
backup region handling for i386, and the first
640 KB of memory is backed-up. This code is

7

Capture kernel image

Parameter segment
 Backup Region
 Elf core headers

p_offset

p_paddr

Copy to backup region

0K

 4G

 640K

 Header
 Program

 Purgatory

Figure 4: Saving Contents To Backup Region

more or less architecture dependent. Other ar-
chitectures can define their own backup regions
and plug-in the implementations into existing
kexec user space code.

4.4 Booting into Capture Kernel

The capture kernel is compiled to boot from
a non-default memory location. It should not
stomp over crashed kernel’s memory contents
to be able to retrieve a sane dump. Hence, cap-
ture kernel is booted with an user defined mem-
ory map instead of the one provided by BIOS or
one passed in parameter segment by kexec. The
command line optionmemmap=exactmap
along with memmap=X@Yis used to override
BIOS provided memory map and define user
memory map.

These boot time parameters are automatically
added to command line by kexec tools while

loading the capture kernel and it’s details are
opaque to user. Internally, kexec prepares a
list of memory regions that the capture ker-
nel can safely use to boot into, and appropriate
memmapoptions are appended to the command
line accordingly. The backup region and ELF
header segments are excluded from this list to
avoid stomping of these memory areas by new
kernel.

Address of start of ELF header segment is
passed to the capture kernel through the
elfcorehdr= command line option. This
option is also added automatically to command
line by kexec tools.

4.5 Dump Capture Mechanism

Once the capture kernel has booted there are
multiple design options for dump capturing
mechanism. Few of them are as following.

• Kernel Space

Export ELF core image through the
/proc/vmcore interface which can be
directly used by ELF core format aware
analysis tools such asgdb . Also export
raw linear view of memory through device
interface /dev/oldmem . Other crash
analysis tools can undergo required modi-
fications to adapt to these formats.

This is an easy to use solution which offers
a wide variety of choices. Standard tools
like cp, scp, ftp can be used to copy
the image to the disk either locally or over
the network.gdb can be used directly for
limited debugging. The flip side is that
the/proc/vmcore code is in the kernel
and debugging the kernel code is relatively
harder.

8

• User Space

User space utilities which read the raw
physical memory through suitable inter-
faces like/dev/oldmem and write out
the dump image.

• Early User Space

Utilities that run from initial ramdisk and
perform a raw dump to pre-configured
disk. This approach is especially useful in
a scenario when root file system happens
to be corrupted after the crash.

For now, we stick to kernel space implemen-
tation and other solutions (user space or early
user space) can evolve slowly to cater to wide
variety of requirements. The following sections
cover implementation details.

4.5.1 Accessing Dump Image in ELF Core
Format

ELF core headers, as stored by crashed ker-
nel, are parsed and the dump image is ex-
ported to user space through/proc/vmcore .
Backup region details are abstracted in ELF
headers, and/proc/vmcore implementa-
tion is not even aware of the presence of the
backup region. The physical address of the
start of the ELF header is passed to the cap-
ture kernel through theelfcorehdr= com-
mand line option. Stored ELF headers undergo
a sanity check during the/proc/vmcore
initialization and if valid headers are found
then initialization process continues otherwise
/proc/vmcore initializaiton is aborted and
thevmcore file size is set to zero.

CPU register states are saved in note sections
by crashing kernel and one PT_NOTE type pro-
gram header is created for every CPU. To be

fully compatible with ELF core format, all the
PT_NOTE program headers are merged into
one during the/proc/vmcore initialization.
Figure 5 depicts what a/proc/vmcore ex-
ported ELF core images looks like.

Header PT_NOTE PT_LOAD

Per Cpu
Register ELF

 Program
 Header

 States

 Dump
 Memory
 Image

 Program
 Header

Figure 5: ELF Core Format Dump Image

Physical memory can be discontiguous and this
means that offset in the core file can not di-
rectly map to a physical address unless memory
holes are filled with zeros in the core file. On
some architectures like IA64, holes can be big
enough to deter one from taking this approach.

This new approach does not fill memory holes
with zeros, instead it prepares one program
header for every contiguous memory chunk.
It maintains a linked list in which each ele-
ment represents one contiguous memory re-
gion. This list is prepared during init time and
also contains the data to map a given offset
to respective physical address. This enables
/proc/vmcore to determine where to get the
contents from associated with a given offset in
ELF core file when a read is performed.

gdb can be directly used with
/proc/vmcore for limited debugging.
This includes processor status at the time of
crash as well as analyzing linearly mapped
region memory contents. Non-linearly mapped
areas like vmalloced memory regions can not
be directly analyzed because kernel virtual
addresses for these regions have not been filled
in ELF headers. Probably a user space utility
can be written to read in the dump image,
determine the virtual to physical address
mapping for vmalloced regions and export the
modified ELF headers accordingly.

9

Alternatively, the /proc/vmcore interface
can be enhanced to fill in the virtual addresses
in exported ELF headers. Extra care needs to
be taken while handling it in kernel space be-
cause determining the virtual to physical map-
ping shall involve accessing VM data structures
of the crashed kernel, which are inherently un-
reliable.

4.5.2 Accessing Dump Image in linear raw
Format

The dump image can also be accessed in lin-
ear raw format through the/dev/oldmem in-
terface. This can be especially useful for the
users who want to selectively read out portions
of the dump image without having to write
out the entire dump. This implementation of
/dev/oldmem does not possess any knowl-
edge of the backup region. It’s a raw dummy
interface that treats the old kernel’s memory
as high memory and accesses its contents by
stitching up a temporary page table entry for
the requested page frame. User space applica-
tion needs to be intelligent enough to read in
the stored ELF headers first, and based on these
headers retrieve rest of the contents.

5 How to Configure and Use

Following is the detailed procedure to configure
and use the kdump feature.

1. Obtain a kernel source tree containing
kexec and kdump patches.

2. Obtain appropriate version of kexec-tools.

3. Two kernels need to be built in order to get
this feature working. The first kernel is the
production kernel and the second kernel is
the capture kernel. Build the first kernel as
follows.

• Enable kexec system call
feature.

• Enable sysfs file system
support feature.

4. Build the capture kernel as follows.

• Enable kernel crash dumps
feature.

• The capture kernel needs to boot
from the memory area reserved by
the first kernel. Specify a suitable
value for Physical address
where kernel is loaded .

• Enable /proc/vmcore support.
(Optional)

5. Boot into the first kernel with the com-
mandlinecrashkernel=Y@X . Pass ap-
propriate values for X and Y. Y de-
notes how much memory to reserve
for the second kernel and X denotes
at what physical address the reserved
memory section starts. For example,
crashkernel=32M@16M

6. Preload the capture kernel using following
commandline.

kexec -p <capture kernel>
--crash-dump --args-linux
--append="root=<root-dev>
maxcpus=1 init 1"

7. Either force a panic or pressAlt SysRq
c to force execution of kexec on panic.
System reboots into the capture kernel.

8. Access and save the dump file either
through the/proc/vmcore interface or
the/dev/oldmem interface.

9. Use appropriate analysis tool for debug-
ging. Currentlygdb can be used with the
/proc/vmcore for limited debugging.

10

6 Advantages and Limitations

Every solution has its advantages and limita-
tions and kdump is no exception. Section 6.1
highlights the advantages of this approach and
limitations have been captured in Section 6.2.

6.1 Advantages

• More reliable as it allows capturing the
dump from a freshly booted kernel as op-
posed to some of other methods likeLKCD
, where dump is saved from the context of
crashing kernel, which is inherently unre-
liable.

• Offers much more flexibility in terms of
choosing the dump device. As dump is
captured from a newly booted kernel, vir-
tually it can be saved to any storage media
supported by kernel.

• Framework is flexible enough to accom-
modate filtering mechanism. User space
or kernel space based filtering solutions
can be plugged in, unlike firmware based
solutions. For example, a kernel pages
only filter can be implemented on top of
the existing infrastructure.

6.2 Limitations

• Devices are not shutdown/reset after a
crash, which might result in driver initial-
ization failure in capture kernel.

• Non-disruptive dumping is not possible.

7 Status and TODOS

Kdump has been implemented for i386 and ini-
tial set of patches are in -mm tree. Following
are some of the TODO items.

• Harden the device drivers to initialize
properly in the capture kernel after a crash
event.

• Modify crash to be able to analyze
kdump generated crash dumps.

• Port kdump to other platforms like x86_64
and ppc64.

• Implement a kernel pages only filtering
mechanism.

8 Conclusions

Kdump has made significant progress in terms
of overcoming some of the past limitations, and
is on its way to become a mature crash dump-
ing solution. Reliability of the approach is fur-
ther bolstered with the capture kernel now boot-
ing from a reserved area of memory, making
it safe from any DMA going on at the time
of crash. Dump information between the two
kernels is being exchanged via ELF headers,
providing more flexibility and allowing kernel
skew. Usability of the solution has been fur-
ther enhanced by enabling the kdump to sup-
port PAE systems and discontiguous memory.

Capture kernel provides/proc/vmcore and
/dev/oldmem interfaces for retrieving the
dump image, and more dump capturing mech-
anisms can evolve based on wide variety of re-
quirements.

There are still issues with driver initialization
in the capture kernel, which need to be looked
into.

References

[01] Hariprasad Nellitheertha,The kexec way
to lightweight reliable system crash
dumping, Linux Kongress, 2004.

11

[02] The latest kexec tools patches,
http://www.xmission.com/~ebiederm/files/
kexec/

[03] Initial Kdump patches,
http://marc.theaimsgroup.com/?l=linux-
kernel&m=109274443023485&w=2

[04] Booting kernel from non de-
fault location patch (bzImage),
http://www.xmission.com/~ebiederm/files
/kexec/2.6.8.1-kexec3/broken-out /highbz-
Image.i386.patch

[05] Booting kernel from non de-
fault location patch (vmlinux),
http://www.xmission.com/~ebiederm/files
/kexec/2.6.8.1-kexec3/broken-out
/vmlinux-lds.i386.patch

[06] Improved Kdump patches
http://marc.theaimsgroup.com/?l=linux-
kernel&m=109525293618694&w=2

[07] Andy Pfiffer, Reducing Sys-
tem Reboot Time with kexec,
http://developer.osdl.org/rddunlap/kexec/
whitepaper/kexec.pdf

[08] Hariprasad Nellitheertha, Re-
boot Linux Faster using kexec,
http://www-106.ibm.com/developerworks
/linux/library/l-kexec.html

[09] Tool Interface Standard (TIS), Executable
and Linking Format (ELF) Specification
(version 1.2)

Acknowledgments

The authors wish to express their sincere thanks
to Suparna Bhattacharya who had been contin-
uously providing ideas and support. Thanks to
Maneesh Soni for numerous suggestions, re-
views and feedback. Thanks to all the others
who have helped us in our efforts.

9 Legal Statement

Copyright c©2005 IBM.

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, and the IBM logo, are trademarks or
registered trademarks of International Business
Machines Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Linux is a registered trademark of Linux Tor-
valds in the United States, other countries, or
both.

Other company, product, and service names
may be trademarks or service marks of others.

References in this publication to IBM products
or services do not imply that IBM intends to
make them available in all countries in which
IBM operates.

This document is provided "AS IS" with no ex-
press or implied warranties. Use the informa-
tion in this document at your own risk.

12

